A Survey of Biological Entity Recognition Approaches
نویسنده
چکیده
There has been growing interest in the task of Named Entity Recognition (NER) and a lot of research has been done in this direction in last two decades. Particularly, a lot of progress has been made in the biomedical domain with emphasis on identifying domain-specific entities and often the task being known as Biological Named Entity Recognition (BER). The task of biological entity recognition (BER) has been proved to be a challenging task due to several reasons as identified by many researchers. The recognition of biological entities in text and the extraction of relationships between them have paved the way for doing more complex text-mining tasks and building further applications. This paper looks at the challenges perceived by the researchers in BER task and investigates the works done in the domain of BER by using the multiple approaches available for the task. KeywordsNamed Entity Recognition, NER, Biological named Entity Recognition, BER, Information Extraction, Text Mining, Bio-NLP. __________________________________________________*****_________________________________________________
منابع مشابه
Named Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملبهبود شناسایی موجودیتهای نامدار فارسی با استفاده از کسره اضافه
Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملImprovement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملA Survey of Stochastic and Gazetteer Based Approaches for Named Entity Recognition
The task of identifying proper names of people, organizations, locations, or other entities is a subtask of information extraction from natural language documents. This paper presents a survey of techniques and methodologies that are currently being explored to solve this difficult subtask. After a brief review of the difficulties and challenges of the task, as well as a look at previous conven...
متن کامل